Fuzzy adaptive ∞ H control for a class of uncertain nonlinear time - delay systems *

نویسندگان

  • Zhenbin Du
  • Shousong Hu
چکیده

Abstract. Combining both kinds of fuzzy logic forms including fuzzy T-S model and adaptive fuzzy logic systems, this paper presents an observer-based ∞ H control scheme for a class of uncertain nonlinear timedelay systems. Firstly, the fuzzy T-S model is used to approximate the nonlinear systems, and an observer is designed to observe the system states, and the fuzzy control law of the fuzzy model is derived by the LMI. Secondly, the adaptive time-delay fuzzy logic systems are constructed, and the modeling errors and the uncertain nonlinear parts are eliminated by a compensator based on the adaptive time-delay fuzzy logic systems with three adjustable parameters: weights, centers and widths. It is proved that the closed loop system satisfies the anticipant ∞ H performance, The simulation results demonstrate that the control scheme is effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS

This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...

متن کامل

Stability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay

In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...

متن کامل

Indirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems

Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...

متن کامل

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS

In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...

متن کامل

DIRECT ADAPTIVE FUZZY PI SLIDING MODE CONTROL OF SYSTEMS WITH UNKNOWN BUT BOUNDED DISTURBANCES

An asymptotically stable direct adaptive fuzzy PI sliding modecontroller is proposed for a class of nonlinear uncertain systems. In contrast toother existing approaches of handling disturbances, the proposed approachdoes not require this bound to be known, only requiring that it exists.Moreover, a PI control structure is used to attenuate chattering. The approachis applied to stabilize an open-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005